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Abstract

We present the first micro-level evidence of the transmission of shocks through

financial networks. Using the network of credit default swap (CDS) transactions

between banks, we identify bank CDS returns attributable to counterparty losses.

A bank’s own CDS spread increases whenever counterparties from whom it has

purchased default protection themselves experience losses. We find no such effect

from losses of non-counterparties, nor from counterparties to whom the bank has

sold protection. The effect on bank CDS returns through this counterparty loss

channel is large relative to the direct effect on a bank’s CDS returns from its own

trading losses.
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IDENTIFYING CONTAGION IN A BANKING NETWORK

1. Introduction

The Financial Crisis of 2008–09 inspired a wealth of academic studies into systemic risk

in banks. An array of theoretical studies extends our understanding of the mechanisms

that could trigger systemic events, and several authors have identified strong evidence that

bank values co-vary, either as a result of common shocks, or as a consequence of trouble

at one bank. But, to date, it has proved impossible to identify micro-level evidence of the

transmission of shocks between banks in the developed world.1

In this paper, we identify bank- and shock-level evidence of contagion in a network con-

structed from a unique dataset of all exposures in the UK single-name Credit Default Swap

(CDS) market between 2009 to 2013, inclusive. The type of contagion that we identify arises

in situations where Bank A has purchased protection from Bank B against losses arising from

default by corporate reference entity X.2 In this situation, a reduction in the creditworthi-

ness of Bank B reduces the value of the protection it has sold to Bank A. As a result, Bank

A’s exposure to entity X increases and, in turn, Bank A’s creditworthiness declines. This

effect occurs in addition both to the events that caused Bank B’s creditworthiness to decline,

and to any independent losses that Bank A’s own portfolio sustains. It should therefore be

possible to identify it in a regression that controls for these effects.

We identify the market perception of a bank’s creditworthiness with the cost of purchas-

ing protection against the bank’s default: that is, with its CDS spread. In the situation

described above, losses by Bank B should cause Bank A’s CDS spread to widen, too. We

find economically and statistically significant evidence that credit risk is transmitted through

this channel. When Bank A has purchased default protection from Bank B then, after con-

trolling for Bank A’s own CDS losses, other banks’ CDS losses and standard system-wide

effects like equity index returns, a one standard deviation aggregate daily loss on Bank B’s

CDS positions increases Bank A’s CDS spread by 0.28%. The transmission hypothesis is the

1An important study of contagion between banks in India, which uses data that predates the credit crisis,
is Iyer and Peydro (2011)

2Banks’ mutual economic exposures are not confined to the CDS market and the effects that we document
could also obtain more generally.
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IDENTIFYING CONTAGION IN A BANKING NETWORK

claim that this effect is driven by the mechanism described in the previous paragraph.

An alternative explanation of our finding is that both banks A and B share a common

risk exposure. We rule out this common exposure hypothesis in favour of the transmission

hypothesis by a kind of differences-in-differences argument. We examine the relationship

between loss transmission and the identity of the protection buyer. Under the common

exposure hypothesis, a loss by Bank B is associated with an increase in Bank A’s CDS

spread regardless of whether Bank A is a buyer of protection from or a seller of protection

to Bank B. By contrast, under the transmission hypothesis, Bank A’s CDS spread should

increase only when Bank A is a buyer of protection from Bank B. The effect we document is

confined to profits or losses by protection sellers and, hence, our results are consistent with

the transmission hypothesis and not with the common exposure hypothesis. To the best of

our knowledge, this is the first study to use this restriction in order to identify transmission

as opposed to common exposure.

As a fraction of bank capitalisation, banks in our sample have very low net CDS expo-

sures. In line with this observation, the economic magnitudes that we find are very small:

a one-standard deviation exposure-weighted loss on their CDS positions by a typical bank’s

counterparties, other things equal, implies an increase in the bank’s CDS spread of 1.5 bps

in our baseline specification. The standard deviation of CDS spread changes in our panel

is 11.6 bps. Nevertheless, these magnitudes are statistically significant. They are also eco-

nomically real: if B owes A one euro, and becomes one euro poorer, A’s cost of protection

should increase, even if both A and B are millionaires. Furthermore, even small losses can

have large effects when there is uncertainty about who is exposed to whom, and to what

extent.

We identify small levels of contagion even in relatively benign markets. Presumably,

contagion effects would be far more important in times of heightened systemic fragility. An

important caveat is that the kind of relatively benign contagion which we document, i.e. the

transmission of everyday small shocks, may operate in a qualitatively different manner from

contagion in times of heightened systemic risk.
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Our results demonstrate a contemporaneous response of CDS spreads to losses on CDS

positions by protection seller counterparties. They therefore have the surprising implication

that the marginal CDS trader in some sense understands the structure of interbank CDS

exposures. It is plausible that this type of understanding could be achieved in relatively

dense trading networks where most deals are performed over the telephone. Alternatively,

it is possible that the counterparties themselves, who know both the bank’s exposures to

themselves and their own losses, update their quotes for protection on bank i in the light

of their own losses. Consistent with this explanation, we find that the effect we document

is orders of magnitude stronger when the bank has only one counterparty CDS dealer. The

effect is also proportionally reduced for a larger number of counterparties.

Our work extends a rich literature on systemic risk and contagion effects. Theoretical

explanations of systemic risk fall into three broad, and overlapping, categories. The first

defines systemic risk as exposure to a common shock. Hence, for example, if all banks have

an exposure to commercial real estate loans, then a shock to the real estate sector causes

losses to every bank in the system. This type of exposure could arise as a natural consequence

of bank diversification (Wagner, 2010); it could also reflect a strategic decision to take

advantage of limited liability so as to externalise some of the costs of failure (Acharya, 2009)

or to capitalise upon the regulator’s unwillingness to allow many banks to fail together

(Acharya and Yorulmazer, 2007; Farhi and Tirole, 2012).

The second approach to systemic risk is concerned with structural funding risks in the

banking sector. Precisely because banks fund long-lived and hard-to-sell assets with short-

dated deposits and wholesale loans, they are exposed to runs, either by depositors or short-

term bank lenders. It is well-understood that an unexpectedly large withdrawal of funds can

cause bank insolvency (Diamond and Dybvig, 1983). Banks therefore have a natural incentive

to pool their supply of ready liquidity: this allows large withdrawals from one bank to be

offset against smaller withdrawals at another, so that banks can put more of their money to

work in the profitable (and socially important) corporate sector. This approach is effective

so long as withdrawals are not so large as to exhaust the aggregate supply of liquidity in the
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banking sector: when that happens, a problem that could have been contained within a few

banks is transmitted to the entire banking sector, and causes widespread bank failure (see

Allen and Gale, 2000; Freixas, Parigi, and Rochet, 2000). Iyer and Peydro (2011) present an

excellent study of this phenomenon, but their analysis uses data from Indian banks, where

banking institutions are still developing.3

The type of theory outlined in the previous paragraph relies upon shocks to the liability

side of the bank’s balance sheet. But those shocks need not be independent of the bank’s

assets. When banks have common exposures then depositors may respond to bad news

by withdrawing in anticipation of the systemic effects above (Allen, Babus, and Carletti,

2012); they may equally mistake liquidity effects elsewhere for bad news about common

asset exposures and so withdraw unnecessarily (Chari and Jagannathan, 1988; Chen, 1999).4

Heider, Hoerova, and Holthausen (2015) show that adverse selection over the quality of bank

assets can cause the interbank market to dry up, so that liquidity sharing fails precisely when

it is most important. In short, theories of systemic risk that lean on the asset side of the

bank’s balance sheet are closely related to those that rely upon liabilities. Indeed, fragile

interbank linkages may be a rational response to problems monitoring bank assets (Rochet

and Tirole, 1996; Morrison and Walther, 2015).

A final strand of the theoretical literature on contagion concentrates upon the topology

of the networks through which shocks are transmitted. For example, and in line with Allen

and Gale’s (2000) pioneering work, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) show that

densely-connected networks are better able to absorb small shocks, but that they amplify

the effects of larger shocks. May, Levin, and Sugihara (2008) and Haldane and May (2011)

use techniques from epidemiology to explain the propagation of shocks through banking

networks, and, in related work, Gai, Haldane, and Kapadia (2011) and Paddrik, Rajan, and

Young (2016) use numerical simulations to study the emergence of systemic liquidity crises

3While India has a well-capitalised banking sector and an effective retail deposit insurance scheme, in a
recent Country Report the IMF (2013, p. 5) referred to “weaknesses in the financial architecture,” particularly
concerning the “inherent conflict of interest when supervising state owned banks,” and identifying “a number
of opportunities to better align current supervisory policies and procedures to international best practice.”

4See also Morrison and White (2013), who show that funding may be withdrawn when idiosyncratic
losses in one bank are interpreted as evidence that all banks are poorly regulated.
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in such networks; Gai et al. (2011) find that more complex networks can amplify systemic

effects. Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011) study network formation,

and identify optimal network structures, and confirm that small levels of “over-linking” can

have profound systemic effects.

Our work identifies a contagion channel that has received little attention in the theoreti-

cal literature. Shocks are transmitted in the literature discussed above through an interbank

market that is designed to absorb funding risks that derive from a structural maturity mis-

match between the two sides of the bank’s balance sheet. But we exhibit a contagion channel

through a network that is intended to distribute risks to bank assets. Any impact of this

contagion upon funding is a second order effect.

Systemic risk and contagion are addressed in a rapidly expanding empirical literature.

Several authors attempt to quantify the scale of systemic risk in real networks by taking

data about real-life networks and simulating the effects of hypothetical shocks (see, e.g.,

Mistrulli, 2007; Degryse and Nguyen, 2007; Gai, Haldane, and Kapadia, 2011; Cont, Moussa,

and Santos, 2013). Of course, such simulations are only as good as the economic reasoning

that informs their design.

An alternative approach to systemic risk attempts to identify it by examining stock price

effects in banking networks. Such studies often examine the way that share prices in one

bank react to changes in another as, for example, in Hartmann, Straetmans, and de Vries

(2005) and Gropp, Lo Duca, and Vesala (2009). Adrian and Brunnermeier (2016) suggest an

empirical quantification of systemic risk that depends upon Value at Risk measures rather

than upon network structure. Albuquerque, Ramadorai, and Watugala (2015) study con-

tagion in a non-banking network of cross-border trading firms, and demonstrate that firms

with high trade credit in producer countries experience returns that can be predicted using

returns in associated consumer countries. But, in general, as Forbes and Rigobon (2002)

emphasise, it is hard to separate contagion from interdependence.

Our data allow us to analyse correlation by studying the transmission of individual shocks

through a well-defined network. We believe that this is the first time that analysis at this
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level has been performed. We are able to identify counterparty relationships and to control

for losses on banks’ own portfolios and, hence, can be confident that we identify contagion

rather than interdependence. Furthermore, because we can see the linkages along which

shocks are transmitted and the scale of their effects, we do not need to take a theoretical

position upon systemic effects, and our conclusions are not subject to a dual hypothesis

problem.

The rest of this paper is organized as follows. Section 2 describes our data and the

network of CDS counterparties; Section 3 presents our main results. Section 4 concludes.

2. Data and methods

In our analysis we use transaction data from the UK single-name CDS market, which we

obtain from the Depositary Trust & Clearing Corporation (DTCC). The DTCC data contain

all CDS transactions written on UK reference entities, which are corporations whose shares

have their primary listing on the UK stock exchange. In two recent descriptive papers,

Benos, Wetherilt, and Zikes (2013) and Ali, Vause, and Zikes (2016) study the structure

of this market using similar data and sample period. Instead of replicating their work, we

briefly summarize their main findings here.

2.1 The UK single-name CDS market

The UK single-name CDS market is sizable. Ali, Vause, and Zikes (2016) report that the

gross notional amount outstanding varied between EUR 540 billion and EUR 640 billion

between 2009 and 2011, while the net notional amount outstanding decreased from EUR 26.5

billion to EUR 24.5 billion during the same period. Needless to say, the notional amount

considerably overestimates the economic value of the outstanding positions. In terms of

market value, the gross positions dropped from EUR 50 billion to around EUR 15 billion

and the net positions from EUR 3 billion to EUR 1 billion between 2009 and 2011. Typical

daily trading volume equaled EUR 1 billion (Benos, Wetherilt, and Zikes, 2013).
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The UK CDS network has a core-periphery structure, where the G16 dealers form the

core and the non-dealers, such as banks, asset managers, hedge funds and insurers populate

the periphery (Ali, Vause, and Zikes, 2016). The total number of counterparties in the

network increased from 300 to 350 and the overall connectivity of the network dropped

roughly from 3% to 2% between 2009 and 2011. The interdealer network is almost fully

connected, as dealers actively use the interdealer market for sharing inventory risk. The

periphery is significantly sparser. Non-dealers are connected to dealers with probability of

around 20% indicating that most buy-side firms have established relationships with only a

few dealers. Non-dealers almost never trade with each other, which explains the low overall

connectivity of the network mentioned above. It also implies that the G16 dealers are the

main liquidity providers in the CDS market; according to Benos, Wetherilt, and Zikes (2013),

they account for more than 70% of trading volume.5

2.2 Variable construction

For every pair i and j of banks and for every UK reference entity k, we define Pi,j,k,t to be

the total amount of outstanding protection that bank i has bought from bank j on entity k

at date t. Bank i’s date t net CDS exposure to reference entity k with bank j is therefore

NP i,j,k,t = Pi,j,k,t − Pj,i,k,t.

NP i,j,k,t is positive when bank i is a net buyer of protection from bank j, and negative when

bank i is a net seller. We use net position figures NP to compute net exposures to reference

entities and banks as follows.

First, bank i’s date t net position on reference entity k is

NP Ent
i,k,t =

∑
j 6=i

NP i,j,k,t.

5The two-tier structure of the CDS market is similar to that of other OTC markets. For example, Benos,
Payne, and Vasios (2016) report that the share of interdealer activity in the interest rate swap (IRS) market
is about 55%, with the rest consisting of primarily dealer-to-client trading.

8



IDENTIFYING CONTAGION IN A BANKING NETWORK

We measure NP Ent
i,k,t in millions of euros; once again, a positive value for NP Ent

i,k,t indicates

that, at date t, bank i is a net buyer of protection on reference entity k.

Second, bank i’s date t net exposure to bank j is

NP Bank
i,j,t =

∑
k

NP i,j,k,t.

We can write this expression as

NP Bank
i,j,t = NP Bank,B

i,j,t − NP Bank,S
i,j,t , (1)

where

NP Bank,B
i,j,t = max ( NP Bank

i,j,t , 0) (2)

is bank i’s net bought CDS position with bank j and

NP Bank,S
i,j,t = −min ( NP Bank

i,j,t , 0) (3)

is bank i’s net sold CDS position with bank j. If bank i is a net buyer of protection from

bank j, so that its creditworthiness can be affected by bank j’s, then NP Bank,B
i,j,t is positive

and NP Bank,S
i,j,t is zero.

We infer CDS spreads and returns from Markit CDS price data. Given the date t CDS

spread CDS k,t of reference asset k, we can approximate the daily CDS return Rk,t of asset k

as the change in the logarithm of its gross spread:

Rk,t = ln CDS k,t − ln CDS k,t−1.

This approximation is extremely accurate at a daily frequency (see Acharya and Johnson,

2007; Hilscher, Pollet, and Wilson, 2015).

Bank i’s profit or loss on its CDS exposure to reference entity k between date t and date
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t+ 1 is therefore

ΠEnt
i,k,t+1 = NP Ent

i,k,tRk,t+1,

and its profit or loss on all of its open CDS positions over the same period is

Πi,t =
∑
k

ΠEnt
i,k,t.

Our baseline regression examines the impact of profits or losses Πj,t at bank j between

time t and time t + 1 upon bank i’s CDS return (the change in log spread), Ri,t+1. In

the regression, we scale bank j’s profits or losses on its own CDS positions Πj,t by bank

i’s exposure to bank j in the CDS market. The term of interest in our baseline regression

is therefore bank i’s time t exposure-weighted counterparty profit Ki,t, which we define as

follows:

Ki,t =
∑
j 6=i

NP Bank
i,j,t Πj,t.

Note that, because NP Bank
i,j,t and Πj,t are multiplied in this expression, Ki,t is measured in

squared millions of Euros. The resultant unwieldy figures for Ki,t could be simplified if

we were to normalise the net exposures to weights, but doing so would discard valuable

information, because some banks i have much larger exposure than others.

We define bank i’s counterparty profits KB
i,t and KS

i,t for counterparties with whom it has

a net bought and a net sold position, respectively, as follows:

KB
i,t =

∑
j 6=i

NP Bank,B
i,j,t Πj,t; (4)

KS
i,t =

∑
j 6=i

NP Bank,S
i,j,t Πj,t. (5)

If exposure-weighted counterparty losses (negative values of Ki,t) cause increases in bank

i’s CDS spread (positive returns on a bank i CDS spread) after controlling for general loss

levels at other banks as well as at bank i, then we can reasonably argue that we have

identified contagion, and, hence, that we have evidence that shocks are transmitted through
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the network of interbank exposures. We therefore run variations of the following regression:

Ri,t = βΠi,t + γKi,t + δ
∑
j 6=i

Πj,t + ζ
∑
j 6=i

NP Bank
i,j,t + controls + εi,t+1. (6)

The coefficient γ in Model (6) measures the propagation effect of other banks’ losses

through the counterparty risk channel. If γ is negative then bank i’s own CDS spread

increases when the counterparties to whom it has large CDS exposures experience losses on

their own CDS positions.

To understand γ, consider a bank i that has purchased CDS protection from a number

of other banks, including a bank j, but has not itself sold CDS protection to any other

banks. Then we would expect losses at the other banks to affect bank i’s value. We refer to

those losses as first-order, because no other bank relies upon bank i for CDS protection and,

hence, bank i’s losses are not transmitted further. In general, however, bank i may have sold

protection itself. Its first order losses therefore cause further losses at other banks that, in

turn, may have sold CDS protection and, hence, may transmit the loss further through the

CDS network. In particular, the losses may be experienced at bank j (and others that sold

protection to bank i) and, hence, could have a further effect upon bank i. The higher order

losses attributable to this type of feedback loop are referred to by Ota (2013) as systemic.

If market participants rationally anticipate the total effect of counterparty losses in a CDS

network, then the γ coefficient in Model (6) captures the total effect of CDS losses, including

all systemic effects.

We ignore the other constituents of bank balance sheets in our analysis. Banks have

debt liabilities to depositors and to other banks, and they have complex asset holdings,

including bonds, cash, real assets, various derivative and swap positions, repos, and other

money market instruments. The validity of our results is unaffected by the exclusion of these

items, although their interpretation may not be. It is possible that γ inadvertently measures

an effect related to one of the items identified above. For example, γ could conceivably

capture an effect of own loan losses (rather than counterparty CDS losses) on bank CDS

spreads. We view this type of effect as highly unlikely, especially as we find the effect only
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for protection-buying banks, and not for protection-selling banks.

3. Results

Our sample is an unbalanced panel of CDS spreads and positions for 41 banks between

2009 and 2013, inclusive. Our dataset includes transactions with about 800 counterparties,

including banks, hedge funds, and other asset managers. This yields about 44,000 bank days

of data for CDS returns, and 50,000 bank days of equity return data. We trim equity and

CDS returns at the 1% and 99% levels (our results are qualitatively unchanged if we do not

trim).

Table 1 presents summary statistics on our variables. As reported in the first row of

the Table, average daily bank equity returns over the period that we study were 0.6 basis

points per day. But those returns varied widely over the period, with a standard deviation

of 2.46%. Average CDS returns were consequently negative (-4.56 bps), but with a larger

standard deviation (3.21%). Although average daily returns were small, average spread

changes were tiny: the average spread change was -0.037 bps (about 4% of a hundredth of a

percent) with a standard deviation of 11.65 bps. Of course, there was widespread variation

across banks, which our study exploits.

On average, banks experienced a small loss (Πi,t) on their own CDS portfolios of around

30,000 euros per day. The standard deviation of this figure was 23.8 million euros, which

reflects the asymmetric nature of CDS market participation: most banks in our sample were

protection buyers, with a few large banks selling protection to the others.

Because all banks had some exposure to the large protection-selling banks, the average

exposure-weighted counterparty profit (the average value of Ki,t across banks i and dates

t) was large, amounting to an average 1,690 squared millions of euros per day across all

counterparties. The average exposure-weighted profit Ki,t was also very variable, with a

standard deviation of 61,000 squared millions of euros. Equations (4) and (5) define the

average exposure-weighted counterparty profits KB
i,t and KS

i,t for bank i for counterparties

with whom bank i is, respectively, a net buyer and a net seller of protection. Recall from
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Equations (3) and (5) that KS
i,t is negative when the counterparties to whom bank i sells

protection make losses on their positions (i.e. the CDS spreads on which they have bought

protection decline). The average KS
i,t is -840 squared millions of euros per day. We distinguish

between the effects of losses to net bought and net sold counterparties in Table 5 below.

Finally, note that, by virtue of the higher-order systemic loss effects discussed at the end

of Section 2.2, losses experienced at banks with whom bank i has no direct CDS exposure

could still cause losses to bank i. The average scale of such losses in our sample was 2.8

squared millions of euros per day, with a standard deviation of about 50 squared millions of

euros per day.

The remaining variables reported in Table 1 are standard: log returns on the MSCI

Global, S&P 500 and FTSE 100 indices (all justifiable proxies for UK bank systematic risk);

levels and log changes in VIX (the implied volatility index for the S&P 500) and the FVIX

(the equivalent for the FTSE 100). We also control for the average CDS spread of all parties

(about 800) in our sample, which averaged 1.82% over the T-bill rate and had a standard

deviation of 0.9%. The highest observed average spread in our sample was 5.9%, and the

highest log change 9.98% (approximately). CDS spread log changes can be volatile.

3.1 Bank counterparty losses

Table 2 presents our main result. Column (1) reports our baseline specification, with bank

and year fixed effects. We cluster standard errors by bank. Bank CDS returns are negatively

related to the bank’s losses on its own CDS positions, but the coefficient in the baseline

regression is not significant. However, there is a negative relationship between a bank’s

own CDS spread and the exposure-weighted average profit of its CDS counterparties (i.e.,

to Ki,t) that has a better than 1% significance level. The coefficient of -0.00137 relates

(exposure-weighted) losses in squared millions of euros to CDS returns in basis points.

Table 1 reports a mean own CDS loss of -0.03 million euros, with a standard deviation of

23.8 or just under 24 million. Thus, according to specification (1), a one-standard deviation

loss raises a bank’s own CDS spread by 0.381× 24 = 9.1 bps. (That is, a spread of 100 bps
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increases to 1.00091x100 = 100.091 bps.)

The coefficient on the exposure-weighted average counterparty profits (that is, on Ki,t)

coefficient also relates squared millions of euros in profits to a bank’s own CDS spreads

in bps. Table 1 reports a mean Ki,t of 1,690 squared millions of euros and a standard

deviation of 60,904 squared millions of euros. Hence, according to specification (1), a one-

standard deviation combined loss by bank i’s counterparties Ki,t corresponds to an increase

of 60, 904 × 0.00137 = 83.4 bps in bank i’s own CDS spread (later specifications imply

changes about one third of this magnitude), rather larger than the effect of bank i’s own

CDS losses. One simple possible explanation for this difference in magnitudes is that most

banks are protection buyers for other assets on their balance sheet, so that their own CDS

losses offset gains elsewhere, whereas some banks’ CDS losses are not similarly offset. That

is, our banks are mostly hedgers, but some banks, which tend to be their counterparties and

probably the major dealers, may not have fully hedged CDS positions.6

Of our sample of 41 banks, 28 are on average, throughout our sample, daily net buyers of

protection. The smaller the bank in terms of UK CDS gross notional exposures, the more it

is a net buyer: 65% of the gross notional across names of the 20 smallest banks is net bought,

increasing to 80% for the 10 smallest. The largest 15 banks are marginally net sellers, and

since they are unlikely to be net short the underlying corporate loans or bonds, this suggests

they hold, to a small economic extent, residual net exposures to losses on their own CDS

positions which are not fully offset by gains on underlying assets.

Even this very sparse specification, with just bank and year-dummies, bank own CDS

losses and exposure-weighted average bank counterparty CDS profits and losses, explains

about 7% of the variation in bank daily CDS returns, with an adjusted R2 of 7.2% (5.1%

for the untrimmed variables).

The remaining columns add a variety of controls to the baseline specification (1). Stock

index returns are, unsurprisingly, strongly negatively related to bank CDS returns, with

coefficients ranging from -0.21 to -1.14 depending on the index and specification used (we

6If true, this is another argument against the common exposure explanation for our findings.
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use all of MSCI global, S&P500 and FTSE100). Average CDS spread changes, which reflect

general credit conditions controlling for stock index returns, are highly significantly corre-

lated with individual bank CDS spread changes, with a coefficient of 0.86 to 0.90. Adding

index returns and average CDS spread changes increases the adjusted R2 to about 34%.

Changes in VIX are not significantly related to our dependent variable, but changes in the

UK equivalent, FVIX, are: an increase in UK index volatility of 1% is associated with an

increase in bank CDS spreads of about 3 bps, although the additional explanatory power of

changes in volatility given stock returns is low.

In columns (4), (5) and (7) we control for total bank CDS profits (both counterparties

and non-counterparties, of whom the majority are non-counterparties) (i.e. all bank profits

except bank i’s own profits). These are positively related to a bank’s own CDS returns when

we control for stock index returns and average CDS spread changes, with a coefficient of

0.24, so that CDS losses in the general population of banks result in a reduction in own-

bank CDS spread (of around 12 bps for a one standard deviation loss by all other banks).

Thus, while a bank’s counterparties’ losses do tend to increase its own CDS spread, losses

by other banks in general have the opposite effect. Non-counterparty losses are important,

with the expected sign, only if we control for FVIX and average CDS spread levels, rather

than changes, as shown in column (7). If changes in spreads are correlated with other bank

CDS losses, which they likely are, then the effect of changes appears to be picked up by

other bank losses.

Including stock index returns and volatility changes reduces the coefficient on counter-

party losses in magnitude from -0.00152 to -0.00042 (column (2), with the MSCI global

index) or -0.00043 (column (3) which uses instead S&P500 and FTSE 100 index returns),

and these magnitudes are hardly affected in columns (4) and (5). The implied effect on

own CDS spread of a one standard-deviation exposure-weighted aggregate loss by all coun-

terparties together shrinks to 27-28 bps, which is still over three times as large as the own

CDS-loss implied effect from a one-standard deviation move. We suspect that this is because

the network is two-tier, with a few large dealers acting as counterparties to almost everyone,
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and everyone else engaging in only small operations with perhaps one or two other banks.

Our results are robust to using levels instead of changes in average CDS spreads and

implied-volatility indices, and in fact the estimated effect from counterparty losses is stronger,

as shown in columns (6) and (7).

3.2 Bought versus sold

We argue that contagion arises when writers of CDS protection experience losses on their

CDS positions, which in turn negatively affect their solvency levels, and which therefore

reduce the value of protection provided by them to their counterparties. This reduction in

turn negatively affects those counterparties’ solvency levels and increases their own CDS

spreads. If this argument is correct, then solvency shocks should be transmitted to a given

bank i only from counterparties that have sold i CDS protection; the creditworthiness of

a claim that protection buyers have upon i is unaffected by shocks to their own solvency,

although they may exert indirect systemic effects upon i, as noted at the end of Section 2.2.7

We test this hypothesis by distinguishing between the effect of a given bank i’s net bought

and net sold positions KB
i,t and KS

i,t: Equations (2) and (3) state that these are the average

exposure-weighted counterparty profits of banks with which bank i is, respectively, a net

buyer and a seller of CDS protection. Recall that, if its counterparties make positive profits

between date t− 1 and t, both KB
i,t and KS

i,t are positive.

Our arguments yield the hypothesis that the coefficient on KB
i,t should be negative and

significant, while that on KS
i,t should be negligible, although, because of systemic effects, it

need not be precisely zero.

Table 3 tests this hypothesis. The setup is exactly as for Table 2, except that net

exposure-weighted counterparty profits Ki,t are broken into net bought and net sold expo-

sures (it is a consequence of Equation (1) that difference between the two is equal to Ki,t).

As reported in the second and third rows of the table, coefficients for exposure-weighted

7There will be some counterparty risk on both sides, but with asymmetric risk on the part of the
protection buyer.
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counterparty profits are negative and significant for counterparties from whom the bank

is a net protection buyer; the coefficients for banks to whom the bank is a net protection

seller are positive but not significant in any of our specifications. These observations are

consistent with our hypothesis. Note that, because the coefficient is no longer damped down

by the effect of net sold positions, the coefficient on net bought profits is slightly greater

in magnitude in the Table 3 specification than the corresponding Table 2 coefficient in all

specifications.

3.3 How does information about counterparty losses affect bank CDS spreads?

An obvious question given our results so far is how bank i CDS spreads can change contem-

poraneously with bank i counterparty losses (and only when the bank has bought protection

from that counterparty)? The question is how and when this information is observed and

communicated to broker-dealers, who alter their spreads accordingly. Bank i’s counterpar-

ties themselves are aware of how much protection they have written to (or received from)

bank i, and are therefore able to estimate the impact of their own losses on bank i’s credit-

worthiness. The fewer such counterparties bank i has, the more accurate this estimate will

be: in the limit of a single counterparty (who knows they are the only counterparty), this

estimate must amount to knowledge.8 This explanation predicts that the counterparty loss

coefficient γ should be larger when bank i has fewer counterparties, and largest when it has

only one counterparty. We now test this prediction.

We create a dummy variable that equals 1 if bank i has only one counterparty and zero

otherwise. We include this variable both on its own (as a control) and also its interaction

with exposure-weighted counterparty losses. The coefficient on the interaction term is the

coefficient of interest: it measures by how much γ is larger when a bank has only one

counterparty.

Table 4 reports these results for all the corresponding specifications as in the other tables.

8Bank i might itself assist this kind of knowledge transfer by ‘shopping’ around its usual counterparties
when one of its counterparties suffers a loss (although this begs the question of how bank i itself knows of
such losses), and thus partially revealing its own need for ‘top-up’ protection.
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First, the other coefficients of interest are not much changed and in the case of the exposure to

general counterparty loss still negative and statistically significant and similar in magnitude

to those in table 3. However, the interaction coefficient is large and negative in all but

the first column, where we exclude most of the obvious control variables. For example, in

column (2) the coefficient on the interaction is -0.312, pretty much the same in columns

(3) through (5) and about -0.1 in columns (6) and (7) (which control for the levels, rather

than the changes, in average spreads in the market). All of these coefficients are highly

statistically significant. What is more, they are orders of magnitude larger than the average

effect, although this is partly because the general level of exposure-weighted counterparty

loss is a much larger number than a single counterparty’s loss. This finding is consistent with

the claim that it is the informed counterparty itself which is changing prices for protection

on bank i.

With two counterparties, the effect is similar to only one, but weaker, just as our expla-

nation would suggest (as neither of the two counterparties now has perfect information all

the time about bank i’s exposure-weighted counterparty losses). This is similarly the case

with 3 counterparties. In fact, the interaction coefficient for the case of two counterparties is

about one half of the coefficient on just one (in columns (2) through (5)) and about one third

in the case of three. This is consistent with counterparties updating bank i’s credit spread

only when they themselves suffer a loss, and bank i spreading its protection across all of

its counterparties roughly equally. Just to check, we also used a variable which counted the

number of bank i counterparties, and the relevant interaction in our standard specifications,

and the result is that γ is indeed decreasing in the number of bank i’s counterparties. For

brevity, we have reported the results for only one counterparty. All our other results are

available upon request.

These results are consistent with the hypothesis that information about a bank’s coun-

terparty losses is transmitted to its own CDS spread by the counterparties themselves.
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3.4 Equity returns

In a Modigliani-Miller world, equity returns ought to reflect changes in CDS spreads contem-

poraneously. In particular, anything that causes a bank’s CDS spreads to increase (positive

CDS returns) should reduce the value of the bank’s debt and equity, so that the first or-

der effect on bank i’s equity return of counterparty CDS profits, which we argue implies

improved creditworthiness for bank i, should be positive.

Table 5 checks for this effect, using equity returns, rather than CDS returns, as the

dependent variable. As reported on the second line of the table, exposure-weighted counter-

party CDS profits have a positive effect on bank equity returns when we include no controls

(other than year fixed effects), implying a one-standard deviation increase in total exposure-

weighted counterparty losses induces a negative bank equity return of 30 bps.

However, we find no effect on own equity returns once we include index returns, average

CDS spreads and other controls in our regressions. There is a small, significant negative

effect upon a bank’s equity returns of other bank CDS profits in columns (4) and (5), as well

as a strong negative relationship with changes in average CDS spreads, but the former effect

flips sign in the last specification, column (7).

When we exclude the ten largest banks from our sample, we find results that are more

strongly consistent with our main hypothesis. Table 6 reports these results, and now the

coefficients on exposure-weighted counterparty profits are strongly positive in all columns.

A one-standard deviation exposure-weighted counterparty loss is associated with a 29 bps

negative equity return in column (4) for example - almost exactly the same as the implied

increase in the bank’s own CDS spread. For the ten largest banks, we find the opposite

result.9

Our results are therefore consistent with standard corporate finance accounting, with the

possible exception of the largest ten banks. For these banks, we speculate that their far

greater concentration of all the CDS trading may give them an information advantage which

does not immediately translate into equity markets, where there are many more traders (see

9This result is available from the authors upon request.
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Benos, Wetherilt, and Zikes, 2013). Nor is this finding inconsistent with Hilscher, Pollet, and

Wilson (2015), who find that equity returns generally predict CDS returns, since Hilscher et

al. (2015) consider all news, rather than just news that relates to losses by CDS traders. It

would be interesting, but beyond the scope of this paper, if large bank CDS returns were to

predict other firms’ equity returns.

3.5 Further results and robustness tests

Our results for CDS returns are also stronger if we exclude the ten largest banks. Table 7

reports the same results as table 2, but excludes the largest 10 banks. The magnitude of the

estimate of the coefficient γ is much increased. In column (4) for example, which controls for

index returns, FVIX changes and CDS average spread changes, γ is estimated to be -0.0017

(compared to -0.000437 for all banks), about 3.9 times larger. The corresponding coefficients

for large banks are also negative, but much smaller in magnitude than those reported in table

2.10 These results are consistent with our equity results.

Finally, we consider the impact of exposure-weighted counterparty CDS losses on next-

day CDS spreads. Table 8 reports our results when all of the independent variables are lagged

by one trading day. The coefficient in column (1), which excludes all controls, is marginally

statistically significantly negative, but is economically negligible at about one twentieth the

magnitude of the corresponding contemporaneous figure in Table 2. Columns (2)-(5) include

our usual controls. The coefficients in those columns are statistically significantly positive

and are about 30% the magnitude of their analogues in Table 2. These data appear consistent

with partial reversion in CDS spreads the day after a shock to counterparty creditworthiness.

We find no such effect at longer horizons.

10The results for large banks only are available from the authors on request.
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3.6 A second test based on riskiness of counterparty

Our analysis so far exploits the difference in counterparty risk between sellers and buyers of

protection. However, counterparty risk can also vary in other dimensions. The analysis of

this subsection exploits one of those other dimensions.

During the more recent part of our sample period, CDS contracts on some reference

entities could be novated to a central clearinghouse, whose obligations are mutually guaran-

teed by all clearinghouse members (including non-counterparties). The introduction of such

arrangements is documented and discussed in Benos, Wetherilt, and Zikes (2013), who show

that the vast majority of contracts that become eligible for central clearing at any time in our

sample period do so between December 2009 and May 2010, after which approximately 50%

of the contracts in our sample are eligible for central clearing, although we cannot observe in

our data the fraction of these that are in fact novated to the central clearinghouse. Our data

therefore include three years, starting in 2011, during which about half of the contracts that

we observe could be centrally cleared. Hence, it is possible to eliminate counterparty risk for

these contracts, while it is impossible to do so for the other deals, which cannot be centrally

cleared. Loon and Zhong (2014) show that spreads on centrally cleared CDS contracts are

lower, consistent with reduced counterparty risk.

A bank that elects not to centrally clear a CDS contract when it is possible to do so reveals

a lack of concern about counterparty risk on that contract. If the transmission hypothesis is

correct the effect of counterparty losses on non-centrally clearable contracts should therefore

be stronger than their effect on contracts eligible for central clearing by a revealed preference

argument. There should be no such difference under the common exposure hypothesis.

To test this hypothesis, we construct an indicator variable that equals 1 if a contract

on a given name at a given date was eligible for central clearing after the end of 2010. We

interact this variable with our other variables of interest and report the results in table 9.

Our specifications include all the controls from the previous tables (in particular those from

table 2 column 5), which we suppress for brevity.

Columns (1) and (2) report these “diff-in-diff” results. The generally negative effect of
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counterparty profits on bank i CDS spreads of around -0.0025 is completely unwound for

those contracts eligible for central clearing: the coefficients on the latter are both econom-

ically and statistically negligible. Testing whether the two coefficients are different yields

a p-value of 5% or less in both columns. We therefore find no effect of counterparty losses

when banks are able to eliminate counterparty risk but choose not to. When banks cannot

eliminate counterparty risk, counterparty losses increase a bank’s own CDS spread.

We also performed a “diff-in-diff-in-diff” test, in which we examined the difference be-

tween contracts eligible and ineligible for central clearing separately for profits by net sellers

and net buyers of protection. These results are reported in columns (3) and (4). Again, we

find non-centrally clearable counterparty net bought losses have a strong effect compared to

non-centrally clearable net sold. There is no such difference for centrally clearable contracts.

We can reject the hypothesis that the coefficients for net bought and net sold are the same

for both centrally clearable and non-centrally clearable contracts: we find a difference for,

and only for, non-centrally clearable contracts.

4. Conclusion

We present the first micro-level evidence of the transmission of shocks through financial

networks. Our study uses a novel dataset on actual CDS contracts on UK names to estimate

the differential effects of three types of losses (on CDS positions) on UK bank spreads: the

bank’s own loss, losses by all other banks, and losses by the bank’s counterparties. We find

that own losses and counterparty losses are both associated with an increase in bank CDS

spreads, whereas all other bank losses are not. Our results are consistent with contagion, and

the magnitudes of the two channels (own loss and counterparty loss) are consistent with most

banks using CDS contracts to hedge, while most large counterparties have some net exposure.

Hence, in contrast to previous work in this field, we identify actual (as opposed to theoretical

or hypothetical) propagation of shocks from one agent to another in a sophisticated OTC

market, and we distinguish it from interdependence by showing that the counterparty loss

channel is confined to losses by protection providers: there is no effect of losses by protection
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consumers.

Although the effects we document are statistically significant, they are economically

extremely small. In fact the effect on changes in the level (as opposed to the log) of bank

credit spreads are of the order of hundredths of basis points in any given day. Given that

bank net CDS exposures are very small as a proportion of their total assets, these magnitudes

are economically plausible.

We also show that the effects we document are much larger when the ten largest banks

are excluded, and in that case also have the expected effects on bank equity returns as well.

We show that the effect on CDS spreads partially unwinds the following day but that this

unwinding is merely partial.

Finally we show results consistent with an explanation of how such information about

counterparty losses is transmitted to a bank’s own CDS spread: through the counterparties

themselves changing their quotes on bank i CDS protection in the light of knowledge of

their own losses and bank i’s exposure to themselves. Our contagion effect is shown to be

much stronger for banks with only one counterparty, and decreasing in the number of such

counterparties. Where banks reveal no concern for counterparty risk we find no evidence of

transmission.
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Table 1.
Summary statistics for daily bank CDS positions.

We report log equity returns and CDS returns in bps for a sample of 41 UK banks
between 2009 and 2013, inclusive. For each bank and all of its counterparties (about
800 in the sample, including banks, hedge funds, and asset managers), we observe
outstanding CDS contracts from the DTCC. We obtain average CDS price quotes from
Markit. CDS profits and losses are calculated as price change multiplied by number
of contracts written per reference entity, multiplied by the notional exposure of each
contract (usually e 10 mn). Net positions are gross long positions minus gross short
positions, aggregated across every reference entity for which we have data (mainly UK-
listed reference entities). FVIX is the FTSE 100 implied volatility index. Net sold is
total exposure-weighted bank CDS profit from counterparties that are net protection
buyers from the bank. Net bought (not reported) is the sum of net exposure-weighted
profit and net sold.

Mean Std. Dev.

Log of bank equity returns (bps) 0.60 245.85
Change in log of bank CDS spread (bps) −4.56 321.44
Spread CDS changes (bps) −0.037 11.65
Bank own net CDS profits (e millions) −0.03 23.80
Net exposure-weighted counterparty CDS profits (e millions)2 1, 690.42 60, 904.22
Net sold exposure-weighted counterparty CDS profits (e millions)2 −839.75 28, 973.89
Total net CDS exposure (e millions) 19.72 1, 153.97
Total net sold CDS exposure(e millions) 839.74 1, 221.91
Other bank CDS profits (e millions) −2.79 49.67
MSCI Developed Markets Index log return (bps) 4.16 108.24
S&P 500 log returns (bps) 5.02 119.88
FTSE 100 log returns (bps) 3.21 111.79
VIX level 21.88 8.34
Changes in log VIX (bps) −11.49 676.50
FVIX level 20.78 7.36
Change in log FVIX (bps) −14.97 640.82
Average CDS spread (bps) 181.67 87.51
Change in average log CDS spread (bps) −12.91 162.17
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